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The specific heat of the n-vector model to lowest order in 1/n is analyzed 
when the dimensionality varies continuously between d = 3 and d = 2. 
The changeover from three-dimensional to two-dimensional behavior is 
related to the location of the bare transition temperature with respect to the 
critical region. 
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1. I N T R O D U C T I O N  

In  two-d imens iona l  systems with  a vec tor  o rder  pa r ame te r  there  is no phase  
t rans i t ion  to a state with long-range  order,  m 

On the other  hand,  mode l  ca lcula t ions  ~2'3> (self-consistent  Har t r ee  
app rox ima t ion )  for  superconduc t ing  films exhibi t  an a noma ly  in the specific 
hea t  a t  a finite t empera ture ,  which seems to agree with exper iment .  ~r The  
relevance of  this k ind of  a p p r o x i m a t i o n  to  the descr ip t ion  of  superconduc t ing  
films has been pu t  in d o u b t  by  the more  accura te  results of  Sca lap ino  et al. ~5~ 

However ,  in their  ca lcula t ion  the specific hea t  a noma ly  is even more  p ro-  
nounced  then in the Har t r ee  approx ima t ion .  

Here  we cons ider  the n-vector  mode l  in the l imit  n - +  0% which is equiva-  
lent  to the Har t r ee  app rox ima t ion ,  ~5~ leaving aside the quest ion o f  a realist ic 
descr ip t ion  of  superconduc t ing  films. Our  concern  is the in te rpre ta t ion  of  the  
specific hea t  a n o m a l y  in a mode l  which does  no t  undergo  a phase  t rans i t ion .  

In  o rder  to expla in  the origin o f  the specific heat  a noma ly  we regard  the 
two-d imens iona l  case as the  l imit ing behav ior  ob ta ined  when the d imen-  
s ional i ty  is a l lowed to vai 'y con t inuous ly  f rom d = 3 to d = 2. This device 

1 Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel. 
2 Istituto di Fisica, Universita di Salerno, Salerno, Italy. 

133 

�9 1974 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part o f  this pub- 
lication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written permission of  the publisher. 



134 Daniel J. Amit and Marco Zannetti 

allows one to separate clearly the effect of dimensionality from the fluctuation 
effects due to the interaction. 

We recall that when order parameter fluctuations are neglected the 
theory reduces to mean-field theory. The results of mean-field theory are 
independent of dimensionality. In particular, the transition occurs at a value 
of the temperature which is the same whatever the dimensionality of the 
system. 

If one takes the fluctuations into account, the transition temperature is 
shifted to a lower value. Furthermore, there is an interval around the transi- 
tion temperature (critical region) where the behavior of the system deviates 
from the predictions of mean-field theory. 

In this paper we shall pay particular attention to the relationship between 
the transition temperature shift and the size of  the critical region. In three 
dimensions the former is always smaller than the latterY ~ Consequently, 
mean-field behavior is obliterated by the fluctuations. However, when the 
dimensionality is lowered the opposite situation may occur, and indeed it 
always occurs in two dimensions. In this case the transition temperature shift 
exceeds the size of the critical region and mean-field behavior competes with 
critical behavior. We ascribe to this fact the qualitative features of two- 
dimensional specific heat. 

2. T H E  M O D E L  

We consider a system described by an n-component Ginzburg-Landau 
(GL) field q~(x) = [991(x) ..... 99~(x)]. Namely, the partition function is written 
as a functional integral over all order parameter configurations 

Z = f ~[99]e -~get~l (1) 

where/3 = ( K B T ) -  1. Here ~[99] is the GL functional generalized to the case of 
an n-component field ~5~ 

Jr~ = �89 2 + ro99 2 + (u/2n)(992) ~ ] (2) 

Here 

(v99) ~ = ~ (v99,) ~ (3) 
i = 1  

992 = ~ (99,)2 (4) 
i = l  

and d is the dimensionality of the system. In the GL theory ro is a regular 
function of the temperature 

ro = a ( T -  To) (5) 

where a is a positive constant and To is the GL transition temperature. 
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Usually the inverse temperature/3 is absorbed in the energy functional 
by rescaling the fields (a) 

fi~o2 = r (6) 
This implies 

r0 --~ r0, u -+ fi- lu (7) 

The temperature dependence that one introduces in the coupling constant is 
considered irrelevant to the critical behavior. This is correct as long as the 
transition temperature is not close to T = 0. However, when d - + 2  the 
transition temperature does tend to zero. Consequently, in order to study the 
limit d - +  2, we keep explicitly all temperature dependences. 

The central quantity in the following analysis is the order parameter 
correlation function 

Z -1 f ~[q~]~o~(x)~oi(0)e- ~r162 (8) G(x) (~(x)~0~(0)) 

which satisfies Dyson's equationJ 7) Switching to Fourier space, this takes the 
form 

G- l(k) = Go l(k) - E(k) (9) 
with 

Go~(k) = ~(k 2 + to) (10) 

Once the order parameter correlation function is known, the thermo- 
dynamic properties of the system can be derived from the free energy density 
written as a functional of G(k), (7) 

n I dak G~ - 1 1 [" dak fi-~ W[G] .- ~ ~f i -  n j ~ - ~  log G(k) - --~- *[G] 

(11) 
The functional q)[G], which is related to the self-energy by 

3ag/~a(k) = Z(k) (12) 

is given by the sum of all connected diagrams with no external legs. 
The leading term in the 1/n expansion of the self-energy, namely the 

limit of Z when n ~ ~ ,  is given by the sum of the tree diagrams. (8) To this 
order, the approximation is self-consistent, (9~ that is 

Z = - u f i g  + O(1/n) (13) 
with 

= ( dak a(k) (14) 
N j (2~r)a 

and G(k) must be solved for from Dyson's equation. In this limit the theory 
gives the same critical behavior as the spherical model. (~~ 
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3. T R A N S I T I O N  T E M P E R A T U R E  A N D  C R I T I C A L  R E G I O N  

Since to lowest order the correction to the free propagator  in Eq. (9) is 
independent of  k,  G(k) will be of  the form 

G- l (~)  =/~(k~ + ~ )  (15) 

where K, the inverse correlation length, is given by 

xz = ro + u N  (16) 

Equation (16) is an implicit equation for K, where 

N = f l - l S  a d k ~  = ~ - i S a  - F(a)K ~ (17) 

with 

2 7T 

= d -  2, Sa = 2arra:2i,(d/2 ), F(a) - 2 sin(�89 (18) 

and A is a momentum cutoff introduced to keep the integral finite. (See, e.g., 
Ref. 6.) At T~ (transition temperature) we expect K to vanish. Hence Eq. (16) 
gives 

roo + wT~(Aff/~) = 0 (19) 

where r0~ = a(Tc - To) and w = uK~Sa.  Solving for T~, we get 

Tc = aTo/[a + w(A~ (20) 

Tc < To, namely the transition temperature is From this one sees that 
depressed, and that 

lim Tc = 0 (21) 
o'-+0 

From dimensional considerations on Eq. (2) one can immediately derive that 
the coupling constant u has dimensions energy • (length)a-4. ~6~ Thus one 
can construct Ferrell 's length ~11~ 

R = (wTo) 1/ca-4~ (22) 

and Ginzburg's  criterion ~6,12~ can be restated in the following form: The 
effect of  fluctuations can be neglected as long as the correlation length is 
smaller than R. 

Since in the GL theory the correlation length is given by ro 1/2, the order 
of magnitude of the size of the critical region will be determined by the 
condition rg 1/2 = R, which we write in the form 

~o %0 = R -  2 (23) 

where ~o = (aTo) -11~ is the G L  correlation length at T ---- 0 and % is the size 
of  the critical region in units of  To. 
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Returning to Eq. (20), the shift of  the transition temperature in units of  
To is given by 

•  = T o  - Tc = -  , o ( R a )  ~ 

To cr + eo(RA) o (24) 

Away from criticality, the only fundamental  length in the problem is 
A -  1, hence R will be of  the order of  A -  1. From Eq. (24) then we get 

A#% _~ l/(<~ + %) (25) 

In the three-dimensional case ((~ = 1) we have, therefore, that AE is always 
smaller than %, no matter  how we choose the coupling constant. 

On the other hand, since in the chosen units % < 1, when we reach the 
two-dimensional limit (a = 0), A~ is always larger than %. In the intermediate 
cases both possibilities can occur, namely 

A#% <> 1 for a<> 1 --Co (26) 

AE < E0 means that the G L  transition temperature To is inside the critical 
region, while AE > % means that To is outside. We expect the behavior of  the 
system to be substantially different in the two cases. In fact, while in the first 
case the  fluctuations cancel any trace of  mean-field behavior, in the second 
case mean-field behavior competes with critical behavior, a = 1 and ~ = 0 
are the limiting cases in which the above two types of behavior are dominant,  
respectively. In the intermediate situations we say that the system exhibits 
three-dimensional or two-dimensional behavior according to ~ > 1 - Co or 
a < l - % .  

It  should be remarked at this point that the above considerations seem 
to be in contrast to the idea of universality, which wants critical behavior to 
depend only on the space dimensionality and on the vector dimensionality of  
the order parameter,  while we say that at a fixed a the behavior of  the system 
can depend on %, namely on the coupling constant. However, our considera- 
tions refer to the specific heat, which in this model remains finite. Namely the 
energy density does not fluctuate strongly. Furthermore, as will become clear 
from the following, the anomalies observed when mean-field theory competes 
with critical behavior occur away from the transition temperature and are 
not associated with divergences. 

4. CORRELATION LENGTH A N D  SPECIFIC HEAT 

To leading order the functional �9 is given by 

= - l n u ~ N  2 + O(1) (27) 
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Inserting this in Eq. (11), we get the free energy density 

n . f  dak u n N  2 n [3- ~ d~k 
W = ~ _  ~ (/3-~) 4 2 0 - ~  log G(k) (28) 

Next, we differentiate twice with respect to the temperature and we obtain the 
specific heat per degree of freedom, which we write in dimensionless form as 

C = ACo -- ~ (~:~ + 1)~~ -~--r J (29) 

where 
2xCo = a2To/2wA a (30) 

is the GL specific heat jump and 

T = ( T -  To)/Tc (31) 

In order to compute the specific heat one must first solve Eq. (16) for K 2. 
Using Eq. (20), this can be written in the form 

K 2 + TwF(~)K ~ = (~%- (32) 

From the above equation, in the limit of small ~, we get K~ -, that is, we recover 
the known results for the critical indices of the correlation length and suscepti- 
bility 3 

v = 1 / ( d -  2), r = 2 / ( d -  2) (33) 

When the limit c~ --+ 0 is taken both the r.h.s, and the 1.h.s. of  Eq. (32) diverge; 
however, the divergences cancel out. It is convenient to introduce the tem- 
perature 

T* = T0/[1 + (w/a) log A] (34) 

The limit ~ -+ 0 of Eq. (32) can then be written in the form 

~2 + T w  log x = ~ o 2 ( T -  T * ) / T *  (35) 

This does not mean that in two dimensions the transition temperature is 
T*. In fact, at T*, K is finite. However, for Tsmall Eq. (35) is approximated by 

log K = - - a T o / w T  (36) 

which indicates that ,~ vanishes at T = 0, faster than any power of T, in agree- 
ment with Eq. (21). Namely, 

= e x p ( - a T o / w T )  (37) 

The equation for the specific heat remains unaltered except for the 
substitution of T* for To. 

3 In this model the susceptibility is proportional to K-L 
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Fig. 1. Normalized specific heat C/[(ACo)~.*o] versus reduced 
temperature ~" = ( T  - T * ) / T *  in the two dimensions. The curves are 
labeled by the size of the critical region. 

The results o f  the numer ica l  ca lcula t ion  are  d i sp layed  in Figs. 1 and  2. 
F igure  1 is a p lo t  o f  the normal ized  specific hea t  in the two-d imens iona l  case 
for  different  values o f  %. W h e n  % is very small  the specific heat  behaves  as in 
the G L  theory.  I f  % grows, the curve o f  the specific hea t  deviates  f rom the G L  
curve in the ne ighbo rhood  o f  To. However ,  the qual i ta t ive  behav io r  remains  
unchanged.  The  shift of  the peak  cor responds  to a shift in the same d i rec t ion  
o f  the bare  t rans i t ion  t empera tu re  wi th  respect  to T*. In  fact, in the units we 
have chosen (To - T * ) / T *  = 1% log %, with % < 1. 

Next ,  we let the d imens iona l i ty  vary.  The value o f  c0 is kep t  fixed in 
o rder  to see the change in behav ior  when (r crosses the value 1 - %. This 
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Fig. 2. Normalized specific heat 
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C/[(ACo)Tc/To]  versus reduced 

temperature T = ( T  --  Tc)/Tc at fixed value of the size of the critical 
region co = 0.3. The curves are labeled by ~r = d - 2. The dashed line 
is the specific heat in the ordered phase. 
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indeed occurs in Fig. 2. For  ~r > 1 - E0 there is a cusp at Tc as in the three- 
dimensional case, while for cr < 1 - E0 there is a peak at a value of the 
temperature intermediate between Tc and To of the type observed in two 
dimensions. To complete the picture, we may solve for the specific heat 
below To. In fact, to lowest order in 1/n this model can be solved both in the 
ordered and disordered phases? 3 This gives the dashed line in Fig. 2 (see 
appendix). When we look over the whole temperature range, the specific 
heat for cr < 1 - % behaves exactly as in two dimensions. 

In conclusion we ascribe the anomaly in the specific heat observed at 
d = 2 to a competition between critical behavior and mean field behavior. 
This occurs because in two dimensions the bare transition temperature always 
lies outside the critical region. This interpretation is supported by the behavior 
of the specific heat at higher dimensionality, where a changeover from three- 
dimensional to two-dimensional behavior can be produced by adjusting the 
parameters in such a way that To is either inside or outside the critical region. 

A P P E N D I X  

When there is symmetry breaking we have a nonvanishing value for the 
average order parameter (cp), a propagator for the longitudinal modes Gr., 
and a propagator for the transverse modes Gr. 

These quantities satisfy the following set of equations(la): 

G o I ( k  = O) = iz + K (A.1) 

G z l ( k )  = G o t ( k )  - EL(k) (A.2) 

G~- l(k) = Go ~(k) - Er(k) (A.3) 

where K, ZL, Zr  are functionals of (rp), GL, and Gr. Here ~ is an external 
field and Go~(k) is given by Eq. (10). 

To lowest order in 1/n, one can construct an approximation for K, ZL, 
and Z T which leads to a self-consistent soluble problem, which at the same 
time is the continuation to the ordered phase of the model considered in this 
paper. (~a) 

In the absence of an external field Eqs. (A. 1)-(A.3) reduce to 

(~o) 2 = - ( n / u ) ( r o  + u N )  (A.4) 

G ; Z ( k )  = G[~(k )  = fik 2 (A.5) 
with 

N = ]3- ZAff/r (A.6) 

The corresponding free energy density is 

ro u ~ n u N  2 nil__ - z  ( dak 
W = ~ (~o) 2 + ~ (~0) 4 2 J (2~r) a log Gr(k) (A.7) 
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After  doub le  di f ferent ia t ion with respect  to the  tempera ture ,  the  fo l lowing 

express ion for  the specific hea t  is ob t a ined :  

C = (•Co)T/To (A.8) 

Thus,  for  T < Tc the specific hea t  is the  same as in the G L  theory.  
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